Package rdkit :: Package Chem :: Package Pharm3D :: Module EmbedLib
[hide private]
[frames] | no frames]

Module EmbedLib

source code

Functions [hide private]
 
GetAtomHeavyNeighbors(atom)
returns a list of the heavy-atom neighbors of the atom passed in:
source code
 
ReplaceGroup(match, bounds, slop=0.01, useDirs=False, dirLength=2.0)
Adds an entry at the end of the bounds matrix for a point at the center of a multi-point feature
source code
 
EmbedMol(mol, bm, atomMatch=None, weight=2.0, randomSeed=-1, excludedVolumes=None)
Generates an embedding for a molecule based on a bounds matrix and adds a conformer (id 0) to the molecule
source code
 
AddExcludedVolumes(bm, excludedVolumes, smoothIt=True)
Adds a set of excluded volumes to the bounds matrix and returns the new matrix
source code
 
UpdatePharmacophoreBounds(bm, atomMatch, pcophore, useDirs=False, dirLength=2.0, mol=None)
loops over a distance bounds matrix and replaces the elements that are altered by a pharmacophore
source code
 
EmbedPharmacophore(mol, atomMatch, pcophore, randomSeed=-1, count=10, smoothFirst=True, silent=False, bounds=None, excludedVolumes=None, targetNumber=-1, useDirs=False)
Generates one or more embeddings for a molecule that satisfy a pharmacophore
source code
 
isNaN(v)
provides an OS independent way of detecting NaNs This is intended to be used with values returned from the C++ side of things.
source code
 
OptimizeMol(mol, bm, atomMatches=None, excludedVolumes=None, forceConstant=1200.0, maxPasses=5, verbose=False)
carries out a UFF optimization for a molecule optionally subject to the constraints in a bounds matrix
source code
 
EmbedOne(mol, name, match, pcophore, count=1, silent=0, **kwargs)
generates statistics for a molecule's embeddings
source code
 
MatchPharmacophoreToMol(mol, featFactory, pcophore)
generates a list of all possible mappings of a pharmacophore to a molecule
source code
 
_getFeatDict(mol, featFactory, features)
**INTERNAL USE ONLY**
source code
 
MatchFeatsToMol(mol, featFactory, features)
generates a list of all possible mappings of each feature to a molecule
source code
 
CombiEnum(sequence)
This generator takes a sequence of sequences as an argument and provides all combinations of the elements of the subsequences:
source code
 
DownsampleBoundsMatrix(bm, indices, maxThresh=4.0)
removes rows from a bounds matrix that are that are greater than a threshold value away from a set of other points
source code
 
CoarseScreenPharmacophore(atomMatch, bounds, pcophore, verbose=False)
>>> feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)), ...
source code
 
Check2DBounds(atomMatch, mol, pcophore)
checks to see if a particular mapping of features onto a molecule satisfies a pharmacophore's 2D restrictions
source code
 
_checkMatch(match, mol, bounds, pcophore, use2DLimits)
**INTERNAL USE ONLY**
source code
 
ConstrainedEnum(matches, mol, pcophore, bounds, use2DLimits=False, index=0, soFar=[])
Enumerates the list of atom mappings a molecule has to a particular pharmacophore.
source code
 
MatchPharmacophore(matches, bounds, pcophore, useDownsampling=False, use2DLimits=False, mol=None, excludedVolumes=None, useDirs=False) source code
 
GetAllPharmacophoreMatches(matches, bounds, pcophore, useDownsampling=0, progressCallback=None, use2DLimits=False, mol=None, verbose=False) source code
 
ComputeChiralVolume(mol, centerIdx, confId=-1)
Computes the chiral volume of an atom
source code
 
_test() source code
Variables [hide private]
  _times = {}
  logger = logging.logger()
  defaultFeatLength = 2.0
  __package__ = 'rdkit.Chem.Pharm3D'

Imports: RDConfig, sys, time, math, Stats, DG, Chem, numpy, MolDG, ChemicalFeatures, ChemicalForceFields, Pharmacophore, ExcludedVolume, Geometry, logging


Function Details [hide private]

GetAtomHeavyNeighbors(atom)

source code 
returns a list of the heavy-atom neighbors of the
atom passed in:

>>> m = Chem.MolFromSmiles('CCO')
>>> l = GetAtomHeavyNeighbors(m.GetAtomWithIdx(0))
>>> len(l)
1
>>> isinstance(l[0],Chem.Atom)
True
>>> l[0].GetIdx()
1

>>> l = GetAtomHeavyNeighbors(m.GetAtomWithIdx(1))
>>> len(l)
2
>>> l[0].GetIdx()
0
>>> l[1].GetIdx()
2

ReplaceGroup(match, bounds, slop=0.01, useDirs=False, dirLength=2.0)

source code 
Adds an entry at the end of the bounds matrix for a point at
the center of a multi-point feature

returns a 2-tuple:
  new bounds mat
  index of point added

>>> boundsMat = numpy.array([[0.0,2.0,2.0],[1.0,0.0,2.0],[1.0,1.0,0.0]])
>>> match = [0,1,2]
>>> bm,idx = ReplaceGroup(match,boundsMat,slop=0.0)

the index is at the end:
>>> idx == 3
True

and the matrix is one bigger:
>>> bm.shape == (4, 4)
True

but the original bounds mat is not altered:
>>> boundsMat.shape == (3, 3)
True


We make the assumption that the points of the
feature form a regular polygon, are listed in order
(i.e. pt 0 is a neighbor to pt 1 and pt N-1)
and that the replacement point goes at the center:
>>> print ', '.join(['%.3f'%x for x in bm[-1]])
0.577, 0.577, 0.577, 0.000
>>> print ', '.join(['%.3f'%x for x in bm[:,-1]])
1.155, 1.155, 1.155, 0.000

The slop argument (default = 0.01) is fractional:
>>> bm,idx = ReplaceGroup(match,boundsMat)
>>> print ', '.join(['%.3f'%x for x in bm[-1]])
0.572, 0.572, 0.572, 0.000
>>> print ', '.join(['%.3f'%x for x in bm[:,-1]])
1.166, 1.166, 1.166, 0.000

EmbedMol(mol, bm, atomMatch=None, weight=2.0, randomSeed=-1, excludedVolumes=None)

source code 
Generates an embedding for a molecule based on a bounds matrix and adds
a conformer (id 0) to the molecule

if the optional argument atomMatch is provided, it will be used to provide
supplemental weights for the embedding routine (used in the optimization
phase to ensure that the resulting geometry really does satisfy the
pharmacophore).

if the excludedVolumes is provided, it should be a sequence of
ExcludedVolume objects

>>> m = Chem.MolFromSmiles('c1ccccc1C')
>>> bounds = MolDG.GetMoleculeBoundsMatrix(m)
>>> bounds.shape == (7, 7)
True
>>> m.GetNumConformers()
0
>>> EmbedMol(m,bounds,randomSeed=23)
>>> m.GetNumConformers()
1

AddExcludedVolumes(bm, excludedVolumes, smoothIt=True)

source code 
Adds a set of excluded volumes to the bounds matrix
and returns the new matrix

excludedVolumes is a list of ExcludedVolume objects


 >>> boundsMat = numpy.array([[0.0,2.0,2.0],[1.0,0.0,2.0],[1.0,1.0,0.0]])
 >>> ev1 = ExcludedVolume.ExcludedVolume(([(0,),0.5,1.0],),exclusionDist=1.5)
 >>> bm = AddExcludedVolumes(boundsMat,(ev1,))

 the results matrix is one bigger:
 >>> bm.shape == (4, 4)
 True

 and the original bounds mat is not altered:
 >>> boundsMat.shape == (3, 3)
 True

 >>> print ', '.join(['%.3f'%x for x in bm[-1]])
 0.500, 1.500, 1.500, 0.000
 >>> print ', '.join(['%.3f'%x for x in bm[:,-1]])
 1.000, 3.000, 3.000, 0.000

UpdatePharmacophoreBounds(bm, atomMatch, pcophore, useDirs=False, dirLength=2.0, mol=None)

source code 
loops over a distance bounds matrix and replaces the elements
that are altered by a pharmacophore

**NOTE** this returns the resulting bounds matrix, but it may also
alter the input matrix

atomMatch is a sequence of sequences containing atom indices
for each of the pharmacophore's features.

  >>> feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)),
  ...                ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)),
  ...   ]
  >>> pcophore=Pharmacophore.Pharmacophore(feats)
  >>> pcophore.setLowerBound(0,1, 1.0)
  >>> pcophore.setUpperBound(0,1, 2.0)

  >>> boundsMat = numpy.array([[0.0,3.0,3.0],[2.0,0.0,3.0],[2.0,2.0,0.0]])
  >>> atomMatch = ((0,),(1,))
  >>> bm = UpdatePharmacophoreBounds(boundsMat,atomMatch,pcophore)


   In this case, there are no multi-atom features, so the result matrix
   is the same as the input:
   >>> bm is boundsMat
   True

   this means, of course, that the input boundsMat is altered:
   >>> print ', '.join(['%.3f'%x for x in boundsMat[0]])
   0.000, 2.000, 3.000
   >>> print ', '.join(['%.3f'%x for x in boundsMat[1]])
   1.000, 0.000, 3.000
   >>> print ', '.join(['%.3f'%x for x in boundsMat[2]])
   2.000, 2.000, 0.000

EmbedPharmacophore(mol, atomMatch, pcophore, randomSeed=-1, count=10, smoothFirst=True, silent=False, bounds=None, excludedVolumes=None, targetNumber=-1, useDirs=False)

source code 
Generates one or more embeddings for a molecule that satisfy a pharmacophore

atomMatch is a sequence of sequences containing atom indices
for each of the pharmacophore's features.

  - count: is the maximum number of attempts to make a generating an embedding
  - smoothFirst: toggles triangle smoothing of the molecular bounds matix
  - bounds: if provided, should be the molecular bounds matrix. If this isn't
     provided, the matrix will be generated.
  - targetNumber: if this number is positive, it provides a maximum number
     of embeddings to generate (i.e. we'll have count attempts to generate
     targetNumber embeddings).

returns: a 3 tuple:
  1) the molecular bounds matrix adjusted for the pharmacophore
  2) a list of embeddings (molecules with a single conformer)
  3) the number of failed attempts at embedding


  >>> m = Chem.MolFromSmiles('OCCN')
  >>> feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)),
  ...                ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)),
  ...   ]
  >>> pcophore=Pharmacophore.Pharmacophore(feats)
  >>> pcophore.setLowerBound(0,1, 2.5)
  >>> pcophore.setUpperBound(0,1, 3.5)
  >>> atomMatch = ((0,),(3,))

  >>> bm,embeds,nFail = EmbedPharmacophore(m,atomMatch,pcophore,randomSeed=23,silent=1)
  >>> len(embeds)
  10
  >>> nFail
  0

  Set up a case that can't succeed:
  >>> pcophore=Pharmacophore.Pharmacophore(feats)
  >>> pcophore.setLowerBound(0,1, 2.0)
  >>> pcophore.setUpperBound(0,1, 2.1)
  >>> atomMatch = ((0,),(3,))

  >>> bm,embeds,nFail = EmbedPharmacophore(m,atomMatch,pcophore,randomSeed=23,silent=1)
  >>> len(embeds)
  0
  >>> nFail
  10

isNaN(v)

source code 
provides an OS independent way of detecting NaNs
This is intended to be used with values returned from the C++
side of things.

We can't actually test this from Python (which traps
zero division errors), but it would work something like
this if we could:
>>> isNaN(0)
False

#>>> isNan(1/0)
#True

OptimizeMol(mol, bm, atomMatches=None, excludedVolumes=None, forceConstant=1200.0, maxPasses=5, verbose=False)

source code 
carries out a UFF optimization for a molecule optionally subject
to the constraints in a bounds matrix

  - atomMatches, if provided, is a sequence of sequences
  - forceConstant is the force constant of the spring used to enforce
    the constraints

 returns a 2-tuple:
   1) the energy of the initial conformation
   2) the energy post-embedding
 NOTE that these energies include the energies of the constraints



  >>> m = Chem.MolFromSmiles('OCCN')
  >>> feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)),
  ...                ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)),
  ...   ]
  >>> pcophore=Pharmacophore.Pharmacophore(feats)
  >>> pcophore.setLowerBound(0,1, 2.5)
  >>> pcophore.setUpperBound(0,1, 2.8)
  >>> atomMatch = ((0,),(3,))
  >>> bm,embeds,nFail = EmbedPharmacophore(m,atomMatch,pcophore,randomSeed=23,silent=1)
  >>> len(embeds)
  10
  >>> testM = embeds[0]

  Do the optimization:
  >>> e1,e2 = OptimizeMol(testM,bm,atomMatches=atomMatch)

  Optimizing should have lowered the energy:
  >>> e2 < e1
  True

  Check the constrained distance:
  >>> conf = testM.GetConformer(0)
  >>> p0 = conf.GetAtomPosition(0)
  >>> p3 = conf.GetAtomPosition(3)
  >>> d03 = p0.Distance(p3)
  >>> d03 >= pcophore.getLowerBound(0,1)-.01
  True
  >>> d03 <= pcophore.getUpperBound(0,1)+.01
  True

  If we optimize without the distance constraints (provided via the atomMatches
  argument) we're not guaranteed to get the same results, particularly in a case
  like the current one where the pharmcophore brings the atoms uncomfortably
  close together:
  >>> testM = embeds[1]
  >>> e1,e2 = OptimizeMol(testM,bm)
  >>> e2 < e1
  True
  >>> conf = testM.GetConformer(0)
  >>> p0 = conf.GetAtomPosition(0)
  >>> p3 = conf.GetAtomPosition(3)
  >>> d03 = p0.Distance(p3)
  >>> d03 >= pcophore.getLowerBound(0,1)-.01
  True
  >>> d03 <= pcophore.getUpperBound(0,1)+.01
  False

EmbedOne(mol, name, match, pcophore, count=1, silent=0, **kwargs)

source code 
generates statistics for a molecule's embeddings

Four energies are computed for each embedding:
    1) E1: the energy (with constraints) of the initial embedding
    2) E2: the energy (with constraints) of the optimized embedding
    3) E3: the energy (no constraints) the geometry for E2
    4) E4: the energy (no constraints) of the optimized free-molecule
       (starting from the E3 geometry)

Returns a 9-tuple:
    1) the mean value of E1
    2) the sample standard deviation of E1
    3) the mean value of E2               
    4) the sample standard deviation of E2
    5) the mean value of E3               
    6) the sample standard deviation of E3
    7) the mean value of E4               
    8) the sample standard deviation of E4
    9) The number of embeddings that failed

MatchPharmacophoreToMol(mol, featFactory, pcophore)

source code 
generates a list of all possible mappings of a pharmacophore to a molecule

Returns a 2-tuple:
  1) a boolean indicating whether or not all features were found
  2) a list, numFeatures long, of sequences of features


  >>> import os.path
  >>> dataDir = os.path.join(RDConfig.RDCodeDir,'Chem/Pharm3D/test_data')
  >>> featFactory = ChemicalFeatures.BuildFeatureFactory(os.path.join(dataDir,'BaseFeatures.fdef'))
  >>> activeFeats = [ChemicalFeatures.FreeChemicalFeature('Acceptor', Geometry.Point3D(0.0, 0.0, 0.0)),
  ...  ChemicalFeatures.FreeChemicalFeature('Donor',Geometry.Point3D(0.0, 0.0, 0.0))]
  >>> pcophore= Pharmacophore.Pharmacophore(activeFeats)
  >>> m = Chem.MolFromSmiles('FCCN')
  >>> match,mList = MatchPharmacophoreToMol(m,featFactory,pcophore)
  >>> match
  True

  Two feature types:
  >>> len(mList)
  2

  The first feature type, Acceptor, has two matches:
  >>> len(mList[0])
  2
  >>> mList[0][0].GetAtomIds()
  (0,)
  >>> mList[0][1].GetAtomIds()
  (3,)

  The first feature type, Donor, has a single match:
  >>> len(mList[1])
  1
  >>> mList[1][0].GetAtomIds()
  (3,)

_getFeatDict(mol, featFactory, features)

source code 
**INTERNAL USE ONLY**

>>> import os.path
>>> dataDir = os.path.join(RDConfig.RDCodeDir,'Chem/Pharm3D/test_data')
>>> featFactory = ChemicalFeatures.BuildFeatureFactory(os.path.join(dataDir,'BaseFeatures.fdef'))
>>> activeFeats = [ChemicalFeatures.FreeChemicalFeature('Acceptor', Geometry.Point3D(0.0, 0.0, 0.0)),
...  ChemicalFeatures.FreeChemicalFeature('Donor',Geometry.Point3D(0.0, 0.0, 0.0))]
>>> m = Chem.MolFromSmiles('FCCN')
>>> d =_getFeatDict(m,featFactory,activeFeats)
>>> d.keys()
['Donor', 'Acceptor']
>>> donors = d['Donor']
>>> len(donors)
1
>>> donors[0].GetAtomIds()
(3,)
>>> acceptors = d['Acceptor']
>>> len(acceptors)
2
>>> acceptors[0].GetAtomIds()
(0,)
>>> acceptors[1].GetAtomIds()
(3,)

MatchFeatsToMol(mol, featFactory, features)

source code 
generates a list of all possible mappings of each feature to a molecule

Returns a 2-tuple:
  1) a boolean indicating whether or not all features were found
  2) a list, numFeatures long, of sequences of features


  >>> import os.path
  >>> dataDir = os.path.join(RDConfig.RDCodeDir,'Chem/Pharm3D/test_data')
  >>> featFactory = ChemicalFeatures.BuildFeatureFactory(os.path.join(dataDir,'BaseFeatures.fdef'))
  >>> activeFeats = [ChemicalFeatures.FreeChemicalFeature('Acceptor', Geometry.Point3D(0.0, 0.0, 0.0)),
  ...  ChemicalFeatures.FreeChemicalFeature('Donor',Geometry.Point3D(0.0, 0.0, 0.0))]
  >>> m = Chem.MolFromSmiles('FCCN')
  >>> match,mList = MatchFeatsToMol(m,featFactory,activeFeats)
  >>> match
  True

  Two feature types:
  >>> len(mList)
  2

  The first feature type, Acceptor, has two matches:
  >>> len(mList[0])
  2
  >>> mList[0][0].GetAtomIds()
  (0,)
  >>> mList[0][1].GetAtomIds()
  (3,)

  The first feature type, Donor, has a single match:
  >>> len(mList[1])
  1
  >>> mList[1][0].GetAtomIds()
  (3,)

CombiEnum(sequence)

source code 
This generator takes a sequence of sequences as an argument and
provides all combinations of the elements of the subsequences:

>>> gen = CombiEnum(((1,2),(10,20)))
>>> gen.next()
[1, 10]
>>> gen.next()
[1, 20]

>>> [x for x in CombiEnum(((1,2),(10,20)))]
[[1, 10], [1, 20], [2, 10], [2, 20]]

>>> [x for x in CombiEnum(((1,2),(10,20),(100,200)))]
[[1, 10, 100], [1, 10, 200], [1, 20, 100], [1, 20, 200], [2, 10, 100], [2, 10, 200], [2, 20, 100], [2, 20, 200]]

DownsampleBoundsMatrix(bm, indices, maxThresh=4.0)

source code 
removes rows from a bounds matrix that are 
that are greater than a threshold value away from a set of
other points

returns the modfied bounds matrix

The goal of this function is to remove rows from the bounds matrix
that correspond to atoms that are likely to be quite far from
the pharmacophore we're interested in. Because the bounds smoothing
we eventually have to do is N^3, this can be a big win

 >>> boundsMat = numpy.array([[0.0,3.0,4.0],[2.0,0.0,3.0],[2.0,2.0,0.0]])
 >>> bm = DownsampleBoundsMatrix(boundsMat,(0,),3.5)
 >>> bm.shape == (2, 2)
 True

 we don't touch the input matrix:
 >>> boundsMat.shape == (3, 3)
 True
 
 >>> print ', '.join(['%.3f'%x for x in bm[0]])
 0.000, 3.000
 >>> print ', '.join(['%.3f'%x for x in bm[1]])
 2.000, 0.000

 if the threshold is high enough, we don't do anything:
 >>> boundsMat = numpy.array([[0.0,4.0,3.0],[2.0,0.0,3.0],[2.0,2.0,0.0]])
 >>> bm = DownsampleBoundsMatrix(boundsMat,(0,),5.0)
 >>> bm.shape == (3, 3)
 True

 If there's a max value that's close enough to *any* of the indices
 we pass in, we'll keep it:
 >>> boundsMat = numpy.array([[0.0,4.0,3.0],[2.0,0.0,3.0],[2.0,2.0,0.0]])
 >>> bm = DownsampleBoundsMatrix(boundsMat,(0,1),3.5)
 >>> bm.shape == (3, 3)
 True

CoarseScreenPharmacophore(atomMatch, bounds, pcophore, verbose=False)

source code 


>>> feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)),
...                ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)),
...                ChemicalFeatures.FreeChemicalFeature('Aromatic', 'Aromatic1', Geometry.Point3D(5.12, 0.908, 0.0)),
...                ]
>>> pcophore=Pharmacophore.Pharmacophore(feats)
>>> pcophore.setLowerBound(0,1, 1.1)
>>> pcophore.setUpperBound(0,1, 1.9)
>>> pcophore.setLowerBound(0,2, 2.1)
>>> pcophore.setUpperBound(0,2, 2.9)
>>> pcophore.setLowerBound(1,2, 2.1)
>>> pcophore.setUpperBound(1,2, 3.9)

>>> bounds = numpy.array([[0,2,3],[1,0,4],[2,3,0]],numpy.float)
>>> CoarseScreenPharmacophore(((0,),(1,)),bounds,pcophore)
True

>>> CoarseScreenPharmacophore(((0,),(2,)),bounds,pcophore)
False

>>> CoarseScreenPharmacophore(((1,),(2,)),bounds,pcophore)
False

>>> CoarseScreenPharmacophore(((0,),(1,),(2,)),bounds,pcophore)
True

>>> CoarseScreenPharmacophore(((1,),(0,),(2,)),bounds,pcophore)
False

>>> CoarseScreenPharmacophore(((2,),(1,),(0,)),bounds,pcophore)
False

# we ignore the point locations here and just use their definitions:
>>> feats = [ChemicalFeatures.FreeChemicalFeature('HBondAcceptor', 'HAcceptor1', Geometry.Point3D(0.0, 0.0, 0.0)),
...                ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)),
...                ChemicalFeatures.FreeChemicalFeature('Aromatic', 'Aromatic1', Geometry.Point3D(5.12, 0.908, 0.0)),
...                ChemicalFeatures.FreeChemicalFeature('HBondDonor', 'HDonor1', Geometry.Point3D(2.65, 0.0, 0.0)),
...                ]
>>> pcophore=Pharmacophore.Pharmacophore(feats)
>>> pcophore.setLowerBound(0,1, 2.1)
>>> pcophore.setUpperBound(0,1, 2.9)
>>> pcophore.setLowerBound(0,2, 2.1)
>>> pcophore.setUpperBound(0,2, 2.9)
>>> pcophore.setLowerBound(0,3, 2.1)
>>> pcophore.setUpperBound(0,3, 2.9)
>>> pcophore.setLowerBound(1,2, 1.1)
>>> pcophore.setUpperBound(1,2, 1.9)
>>> pcophore.setLowerBound(1,3, 1.1)
>>> pcophore.setUpperBound(1,3, 1.9)
>>> pcophore.setLowerBound(2,3, 1.1)
>>> pcophore.setUpperBound(2,3, 1.9)
>>> bounds = numpy.array([[0,3,3,3],[2,0,2,2],[2,1,0,2],[2,1,1,0]],numpy.float)

>>> CoarseScreenPharmacophore(((0,),(1,),(2,),(3,)),bounds,pcophore)
True

>>> CoarseScreenPharmacophore(((0,),(1,),(3,),(2,)),bounds,pcophore)
True

>>> CoarseScreenPharmacophore(((1,),(0,),(3,),(2,)),bounds,pcophore)
False

Check2DBounds(atomMatch, mol, pcophore)

source code 
checks to see if a particular mapping of features onto
a molecule satisfies a pharmacophore's 2D restrictions


  >>> activeFeats = [ChemicalFeatures.FreeChemicalFeature('Acceptor', Geometry.Point3D(0.0, 0.0, 0.0)),
  ...  ChemicalFeatures.FreeChemicalFeature('Donor',Geometry.Point3D(0.0, 0.0, 0.0))]
  >>> pcophore= Pharmacophore.Pharmacophore(activeFeats)
  >>> pcophore.setUpperBound2D(0,1,3)
  >>> m = Chem.MolFromSmiles('FCC(N)CN')
  >>> Check2DBounds(((0,),(3,)),m,pcophore)
  True
  >>> Check2DBounds(((0,),(5,)),m,pcophore)
  False

_checkMatch(match, mol, bounds, pcophore, use2DLimits)

source code 
**INTERNAL USE ONLY**

checks whether a particular atom match can be satisfied by
a molecule

ConstrainedEnum(matches, mol, pcophore, bounds, use2DLimits=False, index=0, soFar=[])

source code 
Enumerates the list of atom mappings a molecule
has to a particular pharmacophore.
We do check distance bounds here.

MatchPharmacophore(matches, bounds, pcophore, useDownsampling=False, use2DLimits=False, mol=None, excludedVolumes=None, useDirs=False)

source code 


if use2DLimits is set, the molecule must also be provided and topological
distances will also be used to filter out matches

ComputeChiralVolume(mol, centerIdx, confId=-1)

source code 
Computes the chiral volume of an atom

We're using the chiral volume formula from Figure 7 of 
Blaney and Dixon, Rev. Comp. Chem. V, 299-335 (1994)

  >>> import os.path
  >>> dataDir = os.path.join(RDConfig.RDCodeDir,'Chem/Pharm3D/test_data')

  R configuration atoms give negative volumes:
  >>> mol = Chem.MolFromMolFile(os.path.join(dataDir,'mol-r.mol'))
  >>> Chem.AssignStereochemistry(mol)
  >>> mol.GetAtomWithIdx(1).GetProp('_CIPCode')
  'R'
  >>> ComputeChiralVolume(mol,1) < 0
  True

  S configuration atoms give positive volumes:
  >>> mol = Chem.MolFromMolFile(os.path.join(dataDir,'mol-s.mol'))
  >>> Chem.AssignStereochemistry(mol)
  >>> mol.GetAtomWithIdx(1).GetProp('_CIPCode')
  'S'
  >>> ComputeChiralVolume(mol,1) > 0
  True
  
  Non-chiral (or non-specified) atoms give zero volume:
  >>> ComputeChiralVolume(mol,0) == 0.0
  True

  We also work on 3-coordinate atoms (with implicit Hs):
  >>> mol = Chem.MolFromMolFile(os.path.join(dataDir,'mol-r-3.mol'))
  >>> Chem.AssignStereochemistry(mol)
  >>> mol.GetAtomWithIdx(1).GetProp('_CIPCode')
  'R'
  >>> ComputeChiralVolume(mol,1)<0
  True

  >>> mol = Chem.MolFromMolFile(os.path.join(dataDir,'mol-s-3.mol'))
  >>> Chem.AssignStereochemistry(mol)
  >>> mol.GetAtomWithIdx(1).GetProp('_CIPCode')
  'S'
  >>> ComputeChiralVolume(mol,1)>0
  True