rdkit.Chem.BRICS module¶
- rdkit.Chem.BRICS.BRICSBuild(fragments, onlyCompleteMols=True, seeds=None, uniquify=True, scrambleReagents=True, maxDepth=3)¶
- rdkit.Chem.BRICS.BRICSDecompose(mol, allNodes=None, minFragmentSize=1, onlyUseReactions=None, silent=True, keepNonLeafNodes=False, singlePass=False, returnMols=False)¶
returns the BRICS decomposition for a molecule
>>> from rdkit import Chem >>> m = Chem.MolFromSmiles('CCCOCc1cc(c2ncccc2)ccc1') >>> res = list(BRICSDecompose(m)) >>> sorted(res) ['[14*]c1ccccn1', '[16*]c1cccc([16*])c1', '[3*]O[3*]', '[4*]CCC', '[4*]C[8*]']
>>> res = list(BRICSDecompose(m,returnMols=True)) >>> res[0] <rdkit.Chem.rdchem.Mol object ...> >>> smis = [Chem.MolToSmiles(x,True) for x in res] >>> sorted(smis) ['[14*]c1ccccn1', '[16*]c1cccc([16*])c1', '[3*]O[3*]', '[4*]CCC', '[4*]C[8*]']
nexavar, an example from the paper (corrected):
>>> m = Chem.MolFromSmiles('CNC(=O)C1=NC=CC(OC2=CC=C(NC(=O)NC3=CC(=C(Cl)C=C3)C(F)(F)F)C=C2)=C1') >>> res = list(BRICSDecompose(m)) >>> sorted(res) ['[1*]C([1*])=O', '[1*]C([6*])=O', '[14*]c1cc([16*])ccn1', '[16*]c1ccc(Cl)c([16*])c1', '[16*]c1ccc([16*])cc1', '[3*]O[3*]', '[5*]NC', '[5*]N[5*]', '[8*]C(F)(F)F']
it’s also possible to keep pieces that haven’t been fully decomposed:
>>> m = Chem.MolFromSmiles('CCCOCC') >>> res = list(BRICSDecompose(m,keepNonLeafNodes=True)) >>> sorted(res) ['CCCOCC', '[3*]OCC', '[3*]OCCC', '[3*]O[3*]', '[4*]CC', '[4*]CCC']
>>> m = Chem.MolFromSmiles('CCCOCc1cc(c2ncccc2)ccc1') >>> res = list(BRICSDecompose(m,keepNonLeafNodes=True)) >>> sorted(res) ['CCCOCc1cccc(-c2ccccn2)c1', '[14*]c1ccccn1', '[16*]c1cccc(-c2ccccn2)c1', '[16*]c1cccc(COCCC)c1', '[16*]c1cccc([16*])c1', '[3*]OCCC', '[3*]OC[8*]', '[3*]OCc1cccc(-c2ccccn2)c1', '[3*]OCc1cccc([16*])c1', '[3*]O[3*]', '[4*]CCC', '[4*]C[8*]', '[4*]Cc1cccc(-c2ccccn2)c1', '[4*]Cc1cccc([16*])c1', '[8*]COCCC']
or to only do a single pass of decomposition:
>>> m = Chem.MolFromSmiles('CCCOCc1cc(c2ncccc2)ccc1') >>> res = list(BRICSDecompose(m,singlePass=True)) >>> sorted(res) ['CCCOCc1cccc(-c2ccccn2)c1', '[14*]c1ccccn1', '[16*]c1cccc(-c2ccccn2)c1', '[16*]c1cccc(COCCC)c1', '[3*]OCCC', '[3*]OCc1cccc(-c2ccccn2)c1', '[4*]CCC', '[4*]Cc1cccc(-c2ccccn2)c1', '[8*]COCCC']
setting a minimum size for the fragments:
>>> m = Chem.MolFromSmiles('CCCOCC') >>> res = list(BRICSDecompose(m,keepNonLeafNodes=True,minFragmentSize=2)) >>> sorted(res) ['CCCOCC', '[3*]OCC', '[3*]OCCC', '[4*]CC', '[4*]CCC'] >>> m = Chem.MolFromSmiles('CCCOCC') >>> res = list(BRICSDecompose(m,keepNonLeafNodes=True,minFragmentSize=3)) >>> sorted(res) ['CCCOCC', '[3*]OCC', '[4*]CCC'] >>> res = list(BRICSDecompose(m,minFragmentSize=2)) >>> sorted(res) ['[3*]OCC', '[3*]OCCC', '[4*]CC', '[4*]CCC']
- rdkit.Chem.BRICS.BreakBRICSBonds(mol, bonds=None, sanitize=True, silent=True)¶
breaks the BRICS bonds in a molecule and returns the results
>>> from rdkit import Chem >>> m = Chem.MolFromSmiles('CCCOCC') >>> m2=BreakBRICSBonds(m) >>> Chem.MolToSmiles(m2,True) '[3*]O[3*].[4*]CC.[4*]CCC'
a more complicated case:
>>> m = Chem.MolFromSmiles('CCCOCCC(=O)c1ccccc1') >>> m2=BreakBRICSBonds(m) >>> Chem.MolToSmiles(m2,True) '[16*]c1ccccc1.[3*]O[3*].[4*]CCC.[4*]CCC([6*])=O'
can also specify a limited set of bonds to work with:
>>> m = Chem.MolFromSmiles('CCCOCC') >>> m2 = BreakBRICSBonds(m,[((3, 2), ('3', '4'))]) >>> Chem.MolToSmiles(m2,True) '[3*]OCC.[4*]CCC'
this can be used as an alternate approach for doing a BRICS decomposition by following BreakBRICSBonds with a call to Chem.GetMolFrags:
>>> m = Chem.MolFromSmiles('CCCOCC') >>> m2=BreakBRICSBonds(m) >>> frags = Chem.GetMolFrags(m2,asMols=True) >>> [Chem.MolToSmiles(x,True) for x in frags] ['[4*]CCC', '[3*]O[3*]', '[4*]CC']
- rdkit.Chem.BRICS.FindBRICSBonds(mol, randomizeOrder=False, silent=True)¶
returns the bonds in a molecule that BRICS would cleave
>>> from rdkit import Chem >>> m = Chem.MolFromSmiles('CCCOCC') >>> res = list(FindBRICSBonds(m)) >>> res [((3, 2), ('3', '4')), ((3, 4), ('3', '4'))]
a more complicated case:
>>> m = Chem.MolFromSmiles('CCCOCCC(=O)c1ccccc1') >>> res = list(FindBRICSBonds(m)) >>> res [((3, 2), ('3', '4')), ((3, 4), ('3', '4')), ((6, 8), ('6', '16'))]
we can also randomize the order of the results:
>>> random.seed(23) >>> res = list(FindBRICSBonds(m,randomizeOrder=True)) >>> sorted(res) [((3, 2), ('3', '4')), ((3, 4), ('3', '4')), ((6, 8), ('6', '16'))]
Note that this is a generator function :
>>> res = FindBRICSBonds(m) >>> res <generator object ...> >>> next(res) ((3, 2), ('3', '4'))
>>> m = Chem.MolFromSmiles('CC=CC') >>> res = list(FindBRICSBonds(m)) >>> sorted(res) [((1, 2), ('7', '7'))]
make sure we don’t match ring bonds:
>>> m = Chem.MolFromSmiles('O=C1NCCC1') >>> list(FindBRICSBonds(m)) []
another nice one, make sure environment 8 doesn’t match something connected to a ring atom:
>>> m = Chem.MolFromSmiles('CC1(C)CCCCC1') >>> list(FindBRICSBonds(m)) []